当前位置:K88软件开发文章中心编程资讯编程资讯23 → 文章内容

神经网络诊断皮肤癌超越人类专家?来自医疗界的这篇论文给出了证明

减小字体 增大字体 作者:华军  来源:华军资讯  发布时间:2019-2-18 23:54:15

iagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists论文链接:https://academic.oup.com/annonc/advance-article/doi/10.1093/annonc/mdy166/5004443摘要背景深度学习卷积神经网络(CNN)可能促进黑色素瘤检测,但是仍缺乏 CNN 与大量皮肤科医生诊断表现的对比数据。方法研究者使用皮肤镜图像和对应诊断结果训练谷歌的 Inception v4 CNN 架构。在对比横断面研究中,研究者使用了包含 100 张图像的测试集(I 级:只有皮肤镜图像;II 级:皮肤镜图像和临床信息)。研究中主要的衡量指标包括:敏感度、特异性和 CNN 对病灶进行诊断分类(二分类)的 ROC 曲线下面积(AUC),以及 58 名国际皮肤科医生。次要指标包括皮肤科医生管理决策的诊断效果,以及他们的不同诊断表现。此外,CNN 的表现还与 2016 生物医学成像国际会议(ISBI)挑战赛中的 top-five 算法进行了对比。结果在 I 级诊断中,皮肤科医生对病变分类的敏感性和特异性的平均得分(±标准差)分别为 86.6% (±9.3%) 和 71.3% (±11.2%)。获得更多临床信息后(level-II),得分分别提升到了 88.9% (±9.6%, P = 0.19) 和 75.7% (±11.7%, P 结论我们首次对 CNN 与国际皮肤科医生团队(共 58 位,其中包括 30 位专家)的诊断表现进行了对比。大部分皮肤科医生的表现都不如 CNN。有了 CNN 图像分类辅助,任何内科医生(无论经验多么丰富)都有可能从中受益。蚂蚁金服举办首届金融科技领域算法类大赛——ATEC 蚂蚁开发者大赛人工智能大赛,点击「阅读原文」 进入大赛官网了解比赛信息,比赛报名请使用PC端浏览器打开官网。

上一页  [1] [2] 


神经网络诊断皮肤癌超越人类专家?来自医疗界的这篇论文给出了证明