- ·上一篇文章:小学英语天天练5.17丨小朋友最常去的三个地方, 英语怎么说?
- ·下一篇文章:高考倒计时冲刺作文写作技巧:话题作文出奇法宝
当你拒绝和孩子“闲聊”,也就拒绝了孩子的数学思维启蒙
孩子的一生都会有很大的助益。此外,关于儿童数学启蒙,是有其核心概念的,这些核心概念诠释了孩子在理解学习数学过程中,最内核最基础的认知要点,我花了一点时间制作了这张儿童数学核心经验图表,在这里提供给各位家长,大家可以按图索骥,来发现孩子的认知薄弱环节,希望能够帮到大家。当然,我们也可以去咨询有经验的数学思维教师,这样理解起来会更有针对性,也更清晰。回过头来,之前我们所谈的,通过与孩子交流数学看法,分析孩子数学认知程度,从而发现孩子数学的根源问题,提升孩子的数学思维能力。这样的方法,在一定范围内,其实依旧是就事论事的学习方法,依旧是微观上的,解决具体问题的方法。我们能够帮助孩子发现一个问题两个问题,但是总有更多的问题,我们没有办法手把手的帮孩子找到所有的问题,如果我们给孩子进行的数学思维启蒙,都是运用这样的方法,最后的结果就是挂一漏万。对孩子的数学素养培养,数学洞察能力的提升,数学智慧的发展,作用不大。授人予鱼不如授人与渔,有没有一种方法可以从更宏观的角度,帮助孩子提升数学思维能力呢?的确有!闲话聊天,发掘高观点、元概念如果大家回想我们自己的学习之路,会发现一个现象:我们往往接受一种学习观点,就是通过累积基础知识,量变引起质变,然后再学更难的知识,好像升级打怪兽一样。但是实际上,我们在学习具体的基础知识时,会遇到很多认识上的障碍,这些障碍在某一个阶段怎么都越不过去。而这种情况,在我们到达下一个学习阶段的时候,会突然峰回路转,之前困扰我们的障碍都不再称之为障碍了。举一个很简单的例子,我们在小学阶段学习不同类型的应用题,各种被虐,各种死去活来,但是进入初中,学习了方程,顿时发现,之前的问题原来如此简单。所以就有同学说:折腾什么应用题,早点教方程不好吗?这话虽然不全对,但是有一定的正确性。说明了什么呢?说到底,其实就是我们常说的高屋建瓴。用高概念去指导低概念知识的获得事半功倍,上位概念越坚厚,下位概念获取更容易——飞机打坦克容易,坦克打飞机困难。F.克莱因在《高观点下的初等数学》一书中讲到:“应使学生了解数学并不是孤立的各门学问,而是一个有机的整体,应该站在更高的视角(高等数学)来审视、理解初等数学问题,只有观点高了,事物才能显得明了而简单。”这段话虽然是在讲教师责任,但对孩子的数学学习也有很强的参考价值。不知道大家有没有发现,前面那一张儿童数学核心经验的图表,其中所列举的,都是属于数学概念层面的内容,这其实恰恰符合了数学学习的规律——概念的理解要高于基本知识。但是对于数学素养的培养、数学洞察能力的提升而言,光有核心概念的理解还是不够的,我们更需要往更深层去发掘一些元概念——儿童的哲学观念。钱学森教授曾经把人类科学知识分为六个组成部分,即哲学、自然科学、社会科学、数学、技术科学和系统工程六个门类,而概括一切的是哲学。而数学从其逻辑特性,也是起源于哲学。现在各国对未来人才知识结构的分析形成的基本观点是:基础知识形成学科核心概念,学科核心概念横向形成跨学科主题,而在金字塔的顶端由哲学观点进行统领。这样的知识结构有利于培育创新性人才。再加之刚才所阐述的:高概念指导低概念知识的学习,哲学性思维作为儿童数学思维启蒙的元概念,是合乎逻辑的选择。那么,大家或许会有疑问:哲学是一门非常高深的学问,孩子在启蒙的时候,真的要和他们讲这些“大道理”吗?其实,我们在进行儿童数学思维启蒙时和孩子交流的那些哲学观念,并不是康德、黑格尔那些高深的哲学思想,马修斯在《哲学与幼童》一书中谈到过这个问题,他认为:儿童在各个领域所获得的知识具有理论的基本性质,是非正式的直觉“理论”。在婴儿期,这些理论非常简单,以后理论逐渐变得复杂。幼儿可能只有一些理论,而年长一点的儿童则可能拥有各种不同领域的理论。这些理论是解释性的,能够回答“为什么”的问题。在心理学研究中,通常称为“儿童的朴素理论”其实,就其本质而言,就是“儿童的哲学”,是儿童对宇宙万象、对人生百态、对多彩文化的解释,都是通向一些最根本的哲学问题的。比如有的时候我们会在早餐的时候催促孩子动作快点,因为动作慢上幼儿园就会迟到,从这个现象出发,就有可能引发一些带有哲学意味的讨论。马修斯在他的书中记载了这样的情况:“詹姆斯的母亲抱怨人们制定出“早起”这样东西,让人不得不遵守”,6岁的丹尼斯则慢悠悠的地说:“早和迟都不是东西,他们不像桌子、椅子和杯子一类——你能摸到的东西!”如果我们用数学思维的观点来看这段对话,这其实这就是孩子自发的对抽象概念的一次探索。再比如:吃过晚饭,家里人围坐在一起聊天,忽然爸爸提出这个一个问题:“自行车是否就是少了一个轮子的三轮车?”然后,这样的讨论就一发不可收拾,孩子们纷纷效仿:“一张椅子是否就是没有没有轮翘的摇椅?”“猩猩是否是没有尾巴的猴子?”“老鼠是否是没有翅膀的蝙蝠?”“蛇是否是没有脚的蜥蜴?”……这些稀奇古怪的问题,本质上其实是孩子对分类概念的一次脑力激荡,是一场愉快的思维实验。与此类似的闲聊还有的很多:如果世界上没有数字会怎么样?——数字符号的意义探讨。手指头看不见,它还在那里吗?——守恒观念。看到的物体和真实的物体会不一样——表象和真实,抽象意识的萌芽。我们能够预测一些事物,但有时会失败——推理的萌芽。我们画的画和真实情况不一样——试图理解符号和真实。一棵大树是如何一步一步变成玩具的?——行动与因果。如果有一把够锋利的刀,我们可以把一片面包一直分下去——无限可分性。我可以可以一直数下去——无穷可数性。探讨宇宙的无限——同样是试图理解无穷概念。火车跑的比小车快,飞机跑的比火车快——相对性。所以,我们可以发现,孩子在早期认识世界的时候,通过知识的学习会产生一些基本的哲学观点,对于这些朴素的哲学观点的讨论和交流,会推动孩子进行更深一步的探索和思考,而它的形式其实和闲聊并没有太大的差别,因此我们的家长常常会忽视这些现象,这其实是非常可惜的。如果我们能够认识到这些问题对孩子思维启蒙的意义,对孩子数学学习的基础价值,那么我们就能够把握住这些在家庭生活中闪光的智慧火花,能在闲聊中,一次又一次的完成对孩子的思维训练,同时也在欢笑中收获数学思维的洞察力。最后我想说,归根结底,数学思维的培养是孩子的启蒙,如果我们想要找寻什么秘诀的话,秘诀就是更了解孩子。多观察、多交流、多闲聊,帮助孩子从生活中、游戏中、自然经验中发现中发现抽象而精确的数学,比任何“教育秘籍”都要来得有效。美国奥林匹克数学国家队教练卡耐基梅隆大学数学系罗博深教授,面向4-8年级学生,精心录制《罗博深AMC8入门精讲》25道精心设计的题目由易到难,逐题精讲体验知名度最高的美国数学竞赛!点击下图了解购买▼
当你拒绝和孩子“闲聊”,也就拒绝了孩子的数学思维启蒙