当前位置:K88软件开发文章中心办公应用办公应用08 → 文章内容

少听大忽悠的AI万能论:不打开四道锁,企业永远无法享用AI

减小字体 增大字体 作者:华军  来源:华军资讯  发布时间:2019-2-22 18:59:44

原标题:少听大忽悠的AI万能论:不打开四道锁,企业永远无法享用AI如果你是一位科技和AI爱好者,想必会在各种信息渠道看到“人工智能又能干什么了”、“人工智能又在某领域超过人类了”,这类消息近乎于每天都在我们的眼球前摇晃。久而久之,我们似乎会习惯性地认为AI已经可以拿下一切问题,甚至觉得AI已经是万能的。这种想象假如只存在于普通消费者脑中,那么可能还好;假如企业家和行业从业者也靠这些判断来贸然尝试引入AI,那麻烦可就大了。事实上,今天无论是科技大V、社交网络上的“明白人”,还是各种培训讲师、创业BP,都在似有似无间强调企业应用AI的“神奇之处”,这些亦真亦假。但他们不约而同选择忽略掉的,是今天中国企业选择应用AI时,还有大量的困境与难题摆在眼前。企业AI并不是已经做好的蛋糕,只要付费后拿起刀叉即可享用;相反它更像是一片沃土,想要吃蛋糕,那么企业要从学会种小麦开始。今天我们来聊聊,企业要跨过哪些困境才能享用AI。注意这个表述:享用。假如一个企业只是想要使用AI,那么很简单,在传达室装一个人脸识别门禁花不了多少钱,效果也不错,但问题是对企业的生产和市场似乎并没有什么用处。而企业想要购买全套的AI解决方案也很简单,只要付费即可得,问题是这些技术来到企业之后到底有什么用,是赔钱还是赚钱,就不得而知了。所谓享用,是企业要真实地从AI中获益,可以控制AI为企业本身服务,甚至将AI作为进一步增长的生产资料。我们注意到,前不久的苏州智博会上,华为云就为我们解释了关于企业智能EI的相关问题和华为云提供的解决方案,其认为能够帮助解决实际问题的AI才是企业需要的AI,AI也只有在企业的产业化落地才是真正的企业智能。今天我们就结合华为云体系中的企业智能EI服务案例,来看看今天横亘在企业与AI之间的四道枷锁。或许我们也可以换个角度看待这个问题:这四道锁的一边,是媒体和公众想象出的AI;而另一边,是AI实用化的广袤旷野。第一道锁:关于AI安全,今天到处都是坑智能,代表着更快的数据交互,而数据的速度就像车的速度一样,速度越快,风险越高。前不久我们已经在Facebook的数据泄露问题上,看到了AI时代面临的数据风险和安全挑战。当然我们不能说个人用户数据和企业数据谁更重要,但对于企业本身而言,毫无疑问生产数据甚至技术专利可谓是生存下去的命脉所在。但在我们呼唤AI高歌猛进的时候,却忽略了企业应用AI时的安全问题正在迅速扩张,并且很少被产业界重视。我们可以看几个企业AI应用时面临的安全风险:1、训练数据不安全。进行机器学习类的行业应用模型训练,就必须提供专属的训练数据。而这些数据往往都是从企业生产流程的核心中得来,可说是企业机密中的机密。假如必须把这些数据交给第三方,那么企业的风险系数也将骤然上升。2、数据存储有风险。今天的AI解决方案中,企业一般要大量通过公有云API实现具体产品流程的AI化,那么也就意味着企业往往要将大量产业数据上传到公有云上。这对很多企业来说非常麻烦,但不如此又难以应用AI,容易造成骑虎难下的局面。3、AI模型的不稳定性。去年TensorFlow已经被证实有致命漏洞存在,AI模型往往需要嫁接在不同的开发框架和应用平台上,面临着非常多的未知风险。一旦受到攻击或者任何环节崩坏,企业将直接面临着生产能力崩溃的局面。事实上,这只是几种可能存在的风险。其他像算法本身缺乏可解释性、产业风险难以评估等等,都是围绕在企业AI身边挥之不去的安全阴影。可以说,今天企业应用AI,必须要面对随之而来的“安全问题大礼包”。当然,解决安全问题任重道远。需要各产业环节,包括企业自身的不断探索和尝试。就华为云而言,他们在企业智能EI服务中会采取公有云、私有云等不同的交付方式,满足企业不同等级、不同产品形式的安全需求。此外华为云还提供差分隐私保护和联合学习的方式,即通过密码学算法对用户数据进行加密。仅仅让机器学习模型去学习用户的数据特征,训练AI的同时避免泄露用户隐私和核心数据。此外,AI安全方案也十分重要。在欧美基于AI产业发展,提供专门AI安全防护的配套服务企业已经很多,但在中国整个产业还处在萌芽阶段。AI安全有其独特的需求,比如说华为云的AI安全方案特征之一,是可以通过动态学习不断修正模型,防止模型受到攻击。AI的到来也为安全防护增添了利器,但这需要建立于企业的技术积累和实战经验的基础上。第二道锁:脱离全栈计算谈AI,基本属于耍流氓我们知道在AI世界,算法、算力、数据构成了智能的三要素。但在企业应用上,我们往往会过分重视算法和数据,忽略了算力也是重要的变数。在AI这件事上,其实弥漫着一种暴利美学——面对着海量数据和运算量庞大的卷积任务,算力不达标一切都是纸老虎。或许有人会说,企业都已经上云了,算力当然不成问题。但事实上,AI在企业应用,尤其是在工业领域应用时,需要处理大量数据的同时保证实时处理、实时决策。这也就决定了所有数据回传云端再传回来,基本是不现实的事情。毕竟谁也不希望自己工厂里的机器永远慢几拍。但终端计算显然也不可能,虽然IoT终端正在逐步发展,但相关的芯片、处理能力甚至产品形态都才刚刚开始。等终端能解决所有问题,AI的黄花菜真是早凉了。所以说,企业应用AI时,真正需要的是云、端、边,三位一体化的算力配合,也就是企业对AI任务的全栈运算能力。今天对于企业来说的合理方案,是需要运算基础算力的AI任务回传云端,能够轻量化、集成化进行的快速任务延伸到边缘进行;而在硬件条件满足的前提下,再下放一部分到终端完成。云边协同和异构计算,都是企业应用AI时无法绕过的问题。为此,前不久的苏州智博会上,华为云刚刚发布了智能边缘平台,帮助企业快速、低成本部署边缘计算能力,迅速激发AI的实用价值。有一个华为云分享的案例,可以非常直接地展现出云边协同对于AI的价值。华为云的智慧园区解决方案中,提供了动态人像检索服务。通过摄像头,园区可以实现百亿人像秒级搜索。人像搜索需要快速给出判断结果,完全上传云端自然不现实。但是假如要在终端部署AI运算能力,那就需要把所有摄像头换成智能摄像头。首先成本贵了十倍有余,另外爬到每根电线杆上换摄像头,那个工作量想想都够了。而通过构筑边缘智能平台,将AI识别

[1] [2]  下一页


少听大忽悠的AI万能论:不打开四道锁,企业永远无法享用AI