- ·上一篇文章:护航数字城市建设 360城市网络安全运营中心亮相数博会
- ·下一篇文章:中国音乐著作权协会:小米音乐侵权 索赔32万元
少听大忽悠的AI万能论:不打开四道锁,企业永远无法享用AI
任务进行云边协同运算,华为云有效解决了这个问题。其实现了人脸识别1:N准确率大于95%,并且不需要换任何一颗摄像头。可以看出,在真正的企业应用,尤其是工业应用中,对AI算力的呼唤是非常复杂和具体的。不是云,也不是终端芯片就能解决这个问题,而是需要全栈流程方案的具体部署,满足不同企业用户的不同需求。想要把AI算力一刀切,那基本是对企业耍流氓。第三道锁:充满朦胧美的AI产业价值即使我们有了算力、数据、算法等基础配置,也确信自己企业应用的AI能力是安全的,AI大餐就可以上桌了吗?很不幸,问题又来了:你怎么能确定买到的AI技术,真的实用呢?这并不是一个“杠精附身”的疑问。在AI产业价值自证上,确实存在着很多问题,比如:1、黑箱和算法可解释性影响企业应用。深度学习模型具有黑箱性,这是今天难以规避的问题。而在企业构建业务中的深度学习能力时,算法的不透明时长会导致产品结果不可预知,甚至会因为很小的数据节点全盘崩坏。那么一味相信深度学习,很可能有一个深坑在等待着。2、工程化问题。AI技术可以快速从实验室走到企业中,是它令人激动的一面。但同时也带来了问题,那就是很多算法和解决方案看起来很美,但却缺乏工程化可能。比如稳定性、延展性的欠缺,直接可能导致工程化失败。而且新技术的准确度也是个问题,快速引入新技术,很可能买回了个不合格员工。3、新技术的产业周期回报问题:AI并不是免费的。引入AI,意味着企业要增加各种成本,消耗大量的资源。但这些技术是否能在可靠周期内带回效益,对企业来说却是未知数。另一方面,假如期数延展性不足,企业购买的新技术很快被淘汰,或者无法与其他环节连接,那么企业应用AI时的未知数更将扩大。面对庞大的未知,企业在应用AI时往往是望而却步。这个难题,最好的破解方式其实也简单,那就是直接引入在其他企业得到反复尝试,被证明没有问题的技术——绝不做第一个吃螃蟹的人,对于企业,尤其是中小企业来说是至理名言。华为云的企业智能EI服务方案中,一个特性就是把已经在华为内部实验并应用了很久的技术,推广到各合作企业与行业中。华为作为一个巨型ICT企业,内部就已经是一个各种AI黑科技的绝妙舞台。并且华为也一直在坚持技术先内部再推广的原则。而AI显然是其中的核心,比如近期任正非又强调要加强AI在华为内部的应用,并且建立了专门的资金与技术团队。从华为体系中先内而外的AI案例有很多。比如AOI自动光学检测。在电子元器件焊接中,传统情况下需要工人一人4机值守来查看可能发生的缺陷,靠人工来审查焊接缺陷率。显然,这种方法不仅速度慢、效率低,而且在检测过程中容易出错。根据资料,在华为松山湖工厂的生产线上,每个工人做每次检验要耗时5分钟左右。在加持了AI之后,华为云通过工业视觉领域的图像识别能力,帮助焊接流程实现了无人值守,极大减少人工参与,并且提升了过程中发现缺陷的效率。那么很明显,这项技术是在华为内部检验成功后,是可以推广到类似需要AOI检测的企业与工厂中的。事实上,不仅是单独的技术部类,深度学习能力也一样可以进行先内而外的迁移。比如华为云正在使用迁移学习技术,将华为针对多个典型客户场景,所训练出的高性能的深度学习模型预置在华为云深度学习服务中。客户只需要少量数据和训练时间就可以完成独特模型的训练。AI固然好,靠谱很重要。在企业应用AI时冒险并非美德,尽一切可能收获成熟AI能力,这或许也应该成为AI产业中的某种常识。第四道锁:无法回避的行业独特性最后一个问题,是很多AI专家在畅想未来时都有意无意规避掉的,那就是任何一个产业和企业,都有自己面临的独特性。无论是周期、需求、产业上下游关系,甚至所面临的客户特点,这些都让通用性AI往往施展不开手脚。毫无疑问,让AI的价值最大化,那就必须要让AI和产业特征、企业周期、行业规律相结合。但这在今天显然是最难的一道关卡。我们可以来看一个行业特定属性达成AI化的案例。在华为云企业智能EI服务中,有一个特殊的客户:供暖单位。如何让供暖在保证热率的同时,降低污染和排放,这是一个大众普遍关心的问题。但这里利用通用的AI计算方式显然不行,而是需要对于供暖产业中的独特数据,比如燃煤率、锅炉装置、燃烧通风率等等进行数据收集和整理,再用独立的AI算法给出解决方案。通过华为云专家们深入场景的苦战之后,研发出了供暖阀门动态调节的技术。新的阀门会根据燃烧、温度、能耗、通风等不同情况自动调节,从而在不改变热度的前提下达成了能耗下降4-16%。对于雾霾天和取暖需求来说,可谓功莫大焉。那么,到底如何针对不同行业和企业给出独立AI解决方案呢?首先是满足不同技术等级用户的需求。比如华为云深度学习服务,就根据用户不同需求订了5个等级,让有技术开发能力和大规模应用需求的用户试用更高等级开发支撑,中小企业和轻度用户可以使用轻度开发降低成本。这种避免一刀切的AI策略,首先满足了不同企业的核心差异化。其次,华为云提供颗粒化的人工智能API服务,满足企业具体、定制、重构的AI业务需求。让企业可以像去超市采购一样找到最合适自己的方案。再次,在AI深入各行业当中的时候,最重要的一关是线下支持。毕竟AI的新颖和变化,对于大多数企业和行业来说都是无法马上适应的,只有强力的线下解决团队,企业才真正没有后顾之忧。当然,行业独特性是一个非常模糊的概念,无法用某种万能公式去套用。唯一能做的,是AI和行业携手,一关一水去探索未知。如何拿到钥匙?说了这么多,好像AI很困难,不怎么靠谱的样子。但事实并非如此,今天AI在商业应用上的整体完成度已经值得期待,与大部分行业的连接密度可能都超过我们想象。所受困的是行业基础和人才窘境,这些当然都是问题,但同时也是企业超过竞品的机遇。企业应用人工智能,在今天是否有打开这四道锁的钥匙呢?当然也有。开锁的第一步,是要认识到锁的存在。这句非常像是废话,但其实不然。面对人工智能,今天垂直行业中普遍缺乏良性的认知。过于抵触和过于乐观是我们最常见的两种企业态度,但真正应用和掌控AI,显然两者都不可取。其次,是要找到靠谱的产业合作关系。AI是无法一个企业、一个行业完成的共生技术体系,只有信赖,才能衍生未来。最后,是要认清商业逻辑的必然阶段。解锁AI应用的每一步,事实上在这个产业周期中都是形成新壁垒的过程。无论是算法、人才还是数据,甚至是产业经验与产业关系,这些都是企业接下来的战略优势。合理积累优势并去撬动下一个可能,或许才是AI带给企业的真正机遇。
少听大忽悠的AI万能论:不打开四道锁,企业永远无法享用AI