当前位置:K88软件开发文章中心编程资讯编程资讯24 → 文章内容

知道该在哪“偷工减料”,Google开源深度学习压缩图片技术

减小字体 增大字体 作者:华军  来源:华军资讯  发布时间:2019-2-19 0:19:14

散余弦变换——量化阶段。前两部分有些复杂,但并不是这个技术的核心,所以可以理解为在前两项技术压缩大小已经固定的情况下,优化最后一项量化阶段。而量化阶段的操作就有点类似很多图像处理软件的“另存为”:选择的视觉质量越小,它就损失越多,图片就会被压缩的小。但这个量化阶段的重点是如何取舍图像质量和图像大小这些细节问题。Guetzli算法就是在这个步骤引入了一个叫做Butteraugli的精神视觉模型——它用来决定保存哪些颜色或者细节、压缩掉哪些细节,从而达到人们视觉上的最优,且图像文件更小。但具体是如何做到的,Google Blog中也没有给到更详细的解释。但既然是一项基于图像压缩和人类感知的深度学习技术——或许如果把图像库数据打散成各种标签,与人们视觉感知的结果作逻辑连接,提供人们视觉下的最优解做模型。在不断地摄入众多这样的数据源(图像)后,是不是就可以形成可以支撑Guetzli算法的“精神视觉”模型?而这个精神视觉模型已经学会了判断在人们觉得什么样的图片更好看以及图片如何压缩之间的最优解?嗯,可能比人更了解。Google拿这一结果与另一款比较流行的开源编码器libjpeg进行了对比——“75%的用户更偏好Guetzli,这意味着Butteraugli的精神视觉性模型在高画质感知取舍方面更接近于人类感知。”Google已经在Github上开源了这个Guetzli JPEG编码器。可见这件事情也不只是针对Google网站或者公司本身,而是Google希望所有的网站开发人员、图形设计师或是摄影师都可以使用到这样的图像压缩算法替代网络中传统算法下的JPEG图片,进而大幅降低网络成本。但Google Blog中也提到,因为Guetzli算法涉及到更多的量化过程,也就是说压缩过程比libjpeg更慢,但Guetzli兼容现有的浏览器和设备。Google希望更多的人使用Guetzli算法压缩图片,而如果这一成就达成,相信我们会有更快的浏览体验。当然,也会节省你的手机流量。更多内容,关注品玩微信号:wepingwest限量开放入群申请……PingWest品玩的老朋友了?何不扫码加客服进群聊

上一页  [1] [2] 


知道该在哪“偷工减料”,Google开源深度学习压缩图片技术