当前位置:K88软件开发文章中心编程资讯编程资讯18 → 文章内容

作为产品经理,不懂一点个性化推荐原理,怎么行?

减小字体 增大字体 作者:华军  来源:华军资讯  发布时间:2019-2-16 20:46:39

的物品或信息全部提取出来,并去除u已经喜欢的物品。对于每个候选物品i ,用户u对它感兴趣的程度用如下公式计算:如上面的4个用户,假设我们要给A推荐物品,选取 K = 3 个相似用户,相似用户则是:B、C、D,那么他们喜欢过并且A 没有喜欢过的物品有:c、e,那么分别计算 p(A, c) 和 p(A, e),通过公式可计算出用户 A 对 c 和 e 的喜欢程度可能是一样的,在真实的推荐系统中,只要按得分排序,取前几个物品就可以了。(2)基于物品的 CF(Item CF)基于物品的 CF 的原理和基于用户的 CF 类似,只是在计算邻居时采用物品本身,而不是从用户的角度,即基于用户对物品的偏好找到相似的物品,然后根据用户的历史偏好,推荐相似的物品给他。下图给出了一个例子,对于物品A,根据所有用户的历史偏好,喜欢物品 A的用户都喜欢物品C,得出物品A和物品C比较相似,而用户C喜欢物品A,那么可以推断出用户C可能也喜欢物品 C。ItemCF的算法结构基本与UserCF的算法类似(如下图),只不过由对人的相似度改为了物品之间的相似度,这里不做过多说明了。N(i)和N(j)表示喜欢物品i的用户数,ItemCF的算法结构基本与UserCF的算法类似,这里不做过多说明了。(3)基于模型的协同基于模型的协同过滤推荐就是基于样本的用户喜好信息,训练一个推荐模型,然后根据实时的用户喜好的信息进行预测推荐。① 建立好评分规则比如,对于一篇内容而言,可能会有以下行为:② 算出用户对物品或信息的偏好基于模型的协同最常见的方法为矩阵分解(Matrix factorization),其示意图如下图左边。矩阵分解通过把原始的评分矩阵R分解为两个矩阵相乘,只考虑有评分的值,训练时不考虑missing项的值,如下图右边所示。其背后的核心思想,找到两个矩阵,它们相乘之后得到的那个矩阵的值,与评分矩阵R中有值的位置中的值尽可能接近。这样一来,分解出来的两个矩阵相乘就尽可能还原了评分矩阵R,因为有值的地方,值都相差得尽可能地小,那么missing的值通过这样的方式计算得到,比较符合趋势。具体案例可参考知乎上关于网易云音乐的歌单推荐算法的回答。4. 个性化推荐系统的架构个性化推荐引擎架构主要包括三部分,如下图所示:此外,有的推荐系统会将用户行为拆分为数据和事件,其中,数据的时间敏感度更低,事件的时间敏感度更高。基于时间维度,会在推荐系统中增加一个近线层,比如,我在大众点评上输入了野郊公园后,如果希望及时更新用户的推荐列表,那么这次观看动作就会被视作事件型进入近线层,以更快地更新用户画像数据,因此短期内我会收到公园甚至是该公园相关推荐,但是过了一段时间后,公园的频度就会少很多。5. 小结一说到个性化推荐,大家都会觉得这是技术来主导的事情,但是通过前面对个性化推荐的了解后, 作为产品经理,还是有不同的优化空间和迭代导向。5.1 完善用户画像完善用户画像既可以通过尽可能多的外部渠道数据塑造用户来实现,也可以借助产品设计和运营活动引导用户多沉淀行为来实现。以支付宝为例,一次过年的集五福活动,就让它收集了数以亿计的关系链数据。而紧随 其后的蚂蚁森林、蚂蚁庄园等轻社交游戏,间接地丰富了用户的线下支付数据、用户的健康数据等。5.2 完善规则系统, 优化用户使用体验一方面,规则是最快的上线生效途径,可以用于纠偏、提权等操作。比如最新的网络语举个例子,在《中国有嘻哈》开播之前,大众是不知道红花会是什么的。这时,产品经理就该进行规则干预了,标注红花会是一个嘻哈团体。另一方面,需要认识到短期的干预是应该逐步被长期的机制所替换的。我们应该下力气解决系统的滞后性, 让它能够更快速地实现搜索意图理解的进化,比如监控全网产出的新物品或信息,分析其中的共现词汇特点。评测推荐系统的指标有:因此,基于不同的场景,在使用推荐系统后,产品需要去亲自体验并收集各方面反馈,将反馈同步给技术,并基于反馈,尝试不同推荐方式共同作用,做到查遗补缺,找到更有的推荐方案。作者:玛丽娟,微信公众号:玛丽娟娟有话说本文由 @玛丽娟 原创发布于人人都是产品经理。未经许可,禁止转载

上一页  [1] [2] 


作为产品经理,不懂一点个性化推荐原理,怎么行?