当前位置:K88软件开发文章中心办公应用办公应用08 → 文章内容

如何将知识图谱特征学习应用到推荐系统?

减小字体 增大字体 作者:华军  来源:华军资讯  发布时间:2019-2-22 19:02:27

的参数;然后固定知识图谱特征学习模块的参数,训练推荐系统模块的参数:MKR在电影、图书和新闻推荐上也取得了不错的效果,其F1@K指标在绝大多数情况下都超过了baseline方法:交替学习是一种较为创新和前沿的思路,其中如何设计两个相关的任务以及两个任务如何关联起来都是值得研究的方向。从实际运用和时间开销上来说,交替学习是介于依次学习和联合学习中间的:训练好的知识图谱特征学习模块可以在下一次训练的时候继续使用(不像联合学习需要从零开始),但是依然要参与到训练过程中来(不像依次学习中可以直接使用实体向量)。知识图谱作为推荐系统的一种新兴的辅助信息,近年来得到了研究人员的广泛关注。未来,知识图谱和时序模型的结合、知识图谱和基于强化学习的推荐系统的结合、以及知识图谱和其它辅助信息在推荐系统中的结合等相关问题仍然值得更多的研究。欢迎感兴趣的同学通过留言与我们互动沟通。参考文献[1] DKN: Deep Knowledge-Aware Network for News Recommendation.[2] Collaborative knowledge base embedding for recommender systems.[3] Ripple Network: Propagating User Preferences on the Knowledge Graph for Recommender Systems.[4] MKR: A Multi-Task Learning Approach for Knowledge Graph Enhanced Recommendation.作者简介王鸿伟,本科毕业于上海交通大学计算机科学与技术专业ACM试点班,目前为上海交通大学在读四年级博士,在微软亚洲研究院社会计算组实习。研究兴趣为网络特征学习、推荐系统、文本和社交数据挖掘,并在WWW、AAAI、WSDM、CIKM、TPDS上发表了十余篇论文。张富峥,微软亚洲研究院研究员,从事人工智能和数据挖掘方面的研究。研究兴趣包括推荐系统、用户画像、自然语言处理等领域,在这些领域的顶级会议和期刊上发表了近30余篇论文,如KDD、WWW、Ubicomp、TIST等,曾获ICDM 2013最佳论文大奖。谢幸,微软亚洲研究院资深研究员,中国科技大学兼职博士生导师。他的团队在数据挖掘、社会计算和普适计算等领域展开创新性的研究。他在国际会议和学术期刊上发表了200余篇学术论文,共被引用18000余次,多次在KDD、ICDM等顶级会议上获最佳论文奖。他是ACM、IEEE高级会员和计算机学会杰出会员,曾担任ACM UbiComp 2011、PCC 2012、IEEE UIC 2015、以及SMP 2017等大会程序委员会共同主席。

上一页  [1] [2] 


如何将知识图谱特征学习应用到推荐系统?